RazorNet: Adversarial Training and Noise Training on a Deep Neural Network Fooled by a Shallow Neural Network

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conjugate gradient based method for Decision Neural Network training

Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...

متن کامل

Electrical Load Manageability Factor analyses by Artificial Neural Network Training

On typical medium voltage feeder, Load side management means power energy consumption controlling at connected loads. Each load has various amount of reaction to essential parameters variation that collection of these reactions is mentioned feeder behavior to each parameter variation. Temperature, humidity, and energy pricing variation or major event happening and power utility announcing to th...

متن کامل

Deep neural network training emphasizing central frames

It is common practice to concatenate several consecutive frames of acoustic features as input of a Deep Neural Network (DNN) for speech recognition. A DNN is trained to map the concatenated frames as a whole to the HMM state corresponding to the center frame while the side frames close to both ends of the concatenated frames and the remaining central frames are treated as equally important. Tho...

متن کامل

Training a Quantum Neural Network

Quantum learning holds great promise for the field of machine intelligence. The most studied quantum learning algorithm is the quantum neural network. Many such models have been proposed, yet none has become a standard. In addition, these models usually leave out many details, often excluding how they intend to train their networks. This paper discusses one approach to the problem and what adva...

متن کامل

Shakeout: A New Regularized Deep Neural Network Training Scheme

Recent years have witnessed the success of deep neural networks in dealing with a plenty of practical problems. The invention of effective training techniques largely contributes to this success. The so-called "Dropout" training scheme is one of the most powerful tool to reduce over-fitting. From the statistic point of view, Dropout works by implicitly imposing an L2 regularizer on the weights....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Big Data and Cognitive Computing

سال: 2019

ISSN: 2504-2289

DOI: 10.3390/bdcc3030043